Tape-casting of NASICON-based solid state battery

Dr. Mihkel Vestli Prof. John T. S. Irvine University of St Andrews

SOLBAT 8-month review meeting

- High pressures needed for cycling a solid-state battery.
- Contact loss due to swelling of active cathode material during cycling.
- One approach is to create porous electrolyte scaffold which could be infiltritated with active electrode material.

Choice of electrolyte material -

- Argyrodite (Li₆PS₅X) and LLZO (Li₇La₃Zr₂O₁₂) are two main model systems within SOLBAT project.
- NASICON composition Na_{3+x}Zr₂Si_{2+x}P_{1-x}O₁₂ (NZSP) was chosen as starting material due to:
 - Better processability for obtaining dense structures
 - Some experience from previous work done in St Andrews
- Optimized processing routes will be adapted for the target materials once the powders are available with sufficient quality and quantities.

- Tape-casting technique can be easily scaled up.
- Well established cost-effective method for fabricating thin ceramic layers.
- Controlled layer thickness
- Good candidate method for providing thin electrolyte layers with sufficient conductance

Casting multilayer structures

- Tape-casting technique is used to prepare multilayer NZSP structures.
- Porous NZSP scaffold will be impregnated with active material.

- Solid-state reaction procedure is used for synthesis of NASICON electrolyte material with composition of $Na_{3.5}Zr_2Si_{2.5}P_{0.5}O_{12}$ (NZSP0.5).
- Mixture of soluble precursor compounds provides homogeneous NZSP powder.

Phase purity

- Well crystallized sample was obtained after 1200 °C.
- Minor impurities
- Monoclinic zirconia is typical secondary phase for this material.

+ SOLBAT

Tape-casting of NASICON-based solid state battery

Conductivity

Tape-casting of NASICON-based solid state battery

NZSP powder

- Average size of primary particle: 0.83 μm
- Agglomerates?

+ SOLBAT

Powder processing

Removal of big agglomerates was carried out in two steps:

- Ball-milling
- Ultrasonication

Dilatometry for NZSP tapes

- NZSP tapes were prepared with two different particle sizes.
- NZSP powder with particle size D₅₀=1.4 μm resulted in:
 - lower sintering temperature
 - better sinterability

+ SOLBAT

NZSP electrolyte layers

NZSP powder with better sinterability (D_{50} =1.4 µm)

- denser microstructure
- smaller thickness

+ SOLBAT

Effect of heat treatment

- Limits on sintering temperature
- Optimized heat treatment provides dense structure with good grain-to-grain connectivity.
- Higher temperatures cause formation of Zr-rich phase between the grains.
- Cracks are typical for this material.

- NZSP powder was synthesized and its particle size was tailored.
- NZSP electrolyte layers were fabricated by tape-casting.
- Optimized particle size and heat treatment ensured sufficient densification of NZSP material.

Next steps:

- Dense electrolyte will be sandwiched between porous scaffolds.
- Tape-casting technique will be adapted for LLZO and argyrodite materials.
- PhD student Cameron Bathgate will study wetting on LLZO material for infiltritation process.

Thank you for your attention!