Research from the Faraday Institution’s programme has led to highly cited publications, a suite of patents, and a number of commercial spin-outs.
As of November 2020, the Faraday Institution has contributed over 150 publications to the scientific literature. Half of the published research coming out of the Faraday Institution has international collaboration and an additional 38% has intra-UK collaboration, spanning 122 institutions and five continents.
Multi-Scale Modelling
Catalysing surface film formation, Hoster, H.E., Nature Catalysis (Apr 2018) DOI:10.1038/s41929-018-0060-2 https://www.nature.com/articles/s41929-018-0060-2
Solid electrolyte interphase: Can faster formation at lower potentials yield better performance? Antonopoulos, B.K., Electrochimica Acta (Apr 2018) DOI:10.1016/j.electacta.2018.03.007 https://www.sciencedirect.com/science/article/pii/S001346861830495X
Formation of the Solid Electrolyte Interphase at Constant Potentials: a Model Study on Highly Oriented Pyrolytic Graphite, Antonopoulos, B.K., Batteries & Supercaps (Jun 2018) DOI:10.1002/batt.201800029 https://onlinelibrary.wiley.com/doi/full/10.1002/batt.201800029
Quantifying structure dependent responses in Li-ion cells with excess Li spinel cathodes: matching voltage and entropy profiles through mean field models, Schlueter, S., Physical Chemistry Chemical Physics (Jul 2018) DOI:10.1039/C8CP02989J https://pubs.rsc.org/en/Content/ArticleLanding/2018/CP/C8CP02989J
Controlled hydroxy-fluorination reaction of anatase to promote Mg2+ mobility in rechargeable magnesium batteries, Ma, J., Chemical Communications (Aug 2018) DOI:10.1039/C8CC04136A https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc04136a#!divAbstract
Correlated Polyhedral Rotations in the Absence of Polarons During Electrochemical Insertion of Lithium in ReO3, Bashian, N., ACS Energy Letters (Sep 2018) DOI:10.1021/acsenergylett.8b01179 https://pubs.acs.org/doi/10.1021/acsenergylett.8b01179
Oxidation states and ionicity, Walsh, A., Nature Materials (Oct 2018) DOI:10.1038/s41563-018-0165-7 https://www.nature.com/articles/s41563-018-0165-7
Modelling the effects of thermal gradients induced by tab and surface cooling on lithium-ion cell performance, Zhao, Y., J. Electrochem. Soc. (Oct 2018) DOI:10.1149/2.0901813jes http://jes.ecsdl.org/content/165/13/A3169.abstract
Quick-start guide for first-principles modelling of semiconductor interfaces, Park, J.-S., J. Phys. Energy (Nov 2018) DOI:10.1088/2515-7655/aad928 https://arxiv.org/abs/1808.00359
4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Shearing, P., Daemi, S.R., Materials Horizons (Dec 2018) DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01533c#!divAbstract (See also Degradation)
Impact of Anion Vacancies on the Local and Electronic Structures of Iron-Based Oxyfluoride Electrodes, Burbano, M., J. Phys. Chem. Lett. (Jan 2019) DOI:10.1021/acs.jpclett.8b03503 https://pubs.acs.org/doi/10.1021/acs.jpclett.8b03503
Aligned Ionogel Electrolytes for High‐Temperature Supercapacitors, Liu, X., Advanced Science (Jan 2019) DOI:10.1002/advs.201801337 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.201801337
Non-equilibrium crystallization pathways of manganese oxides in aqueous solution, Sun, W., Nature Comms (Feb 2019) DOI:10.1038/s41467-019-08494-6 https://www.nature.com/articles/s41467-019-08494-6
Pyscses: a Python Space-Charge Site-Explicit Solver, Wellock, G.L., J. Open Source Soft. (Mar 2019) DOI:10.21105/joss.01209 https://joss.theoj.org/papers/803ed6dd19f453819bdd3ed9ceadf3b3
Incorporating Dendrite Growth into Continuum Models of Electrolytes: Insights from NMR Measurements and Inverse Modelling, Sethurajan, A.K., J. Electrochem. Soc. (May 2019) DOI:10.1149/2.0921908jes http://jes.ecsdl.org/content/166/8/A1591.abstract
Crystal-torture: A crystal tortuosity module, O’Rourke, C., J.Open Source Soft. (Jun 2019) DOI:10.21105/joss.01306 https://joss.theoj.org/papers/10.21105/joss.01306
The Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Batteries, Hales, A., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0191912jes https://iopscience.iop.org/article/10.1149/2.0191912jes
Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: I. Physical Model, Sulzer, V., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0301910jes https://iopscience.iop.org/article/10.1149/2.0301910jes
Faster Lead-Acid Battery Simulations from Porous-Electrode Theory: Part II. Asymptotic Analysis, Sulzer, V., J. Electrochem. Soc. (Jul 2019) DOI:10.1149/2.0441908jes https://iopscience.iop.org/article/10.1149/2.0441908jes
Smart and Hybrid Balancing System: Design, Modeling and Experimental Demonstration, Pinto de Castro, R., IEEE Transactions on Vehicular Technology (Jul 2019) DOI:10.1109/TVT.2019.2929653 https://ieeexplore.ieee.org/abstract/document/8768008
Lithium-ion battery fast charging: A review, Tomaszewska, A., eTransportation (Aug 2019) DOI:10.1016/j.etran.2019.100011 https://www.sciencedirect.com/science/article/pii/S2590116819300116
The effect of cell-to-cell variations and thermal gradients on the performance and degradation of lithium-ion battery packs, Liu, X., Applied Energy (Aug 2019) DOI:10.1016/j.apenergy.2019.04.108 https://www.sciencedirect.com/science/article/pii/S0306261919307810
How to Cool Lithium-Ion Batteries: Optimising Cell Design using a Thermally Coupled Model, Zhao, Y., J. Electrochem. Soc. (Aug 2019) DOI:10.1149/2.0501913jes https://iopscience.iop.org/article/10.1149/2.0501913jes
Communication—Why High-Precision Coulometry and Lithium Plating Studies on Commercial Lithium-Ion Cells Require Thermal Baths, Zulke, A., J. Electrochem. Soc. (Aug 2019) DOI:10.1149/2.0841913jes http://jes.ecsdl.org/content/166/13/A2921
Highly Anisotropic Thermal Transport in LiCoO2, Yang, H., J. Phys. Chem. Lett. (Sep 2019) DOI:10.1021/acs.jpclett.9b02073 https://pubs.acs.org/doi/10.1021/acs.jpclett.9b02073
Experimental and numerical analysis to identify the performance limiting mechanisms in solid-state lithium cells under pulse operating conditions, Pang, M., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP03886H https://pubs.rsc.org/no/content/articlelanding/2019/cp/c9cp03886h/unauth#!divAbstract
Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries, Reniers, J., J. Electrochem. Soc. (Sep 2019) DOI:10.1149/2.0281914jes https://iopscience.iop.org/article/10.1149/2.0281914jes/meta
Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review, Li, Y., Renewable and Sustainable Energy Reviews (Oct 2019) DOI:10.1016/j.rser.2019.109254 https://www.sciencedirect.com/science/article/abs/pii/S136403211930454X
Electrochemical thermal-mechanical modelling of stress inhomogeneity in lithium-ion pouch cells, Ai, W., J. Electrochem. Soc. (Oct 2019) DOI:10.1149/2.0122001JES http://jes.ecsdl.org/content/167/1/013512.abstract
Composition-dependent thermodynamic and mass-transport characterization of lithium hexafluorophosphate in propylene carbonate, Hou, T., Electrochimica Acta (Oct 2019) DOI:10.1016/j.electacta.2019.135085 https://www.sciencedirect.com/science/article/pii/S0013468619319565
Exploiting cationic vacancies for increased energy densities in dual-ion batteries, Koketsu, T., Energy Storage Materials (Oct 2019) DOI:10.1016/j.ensm.2019.10.019 https://www.sciencedirect.com/science/article/pii/S2405829719310153
An asymptotic derivation of a single particle model with electrolyte, Marquis, S, J. Electrochem. Soc. (Nov 2019) DOI:10.1149/2.0341915jes http://jes.ecsdl.org/content/166/15/A3693.short
Battery Safety: Data-Driven Prediction of Failure, Finegan, D. P., Joule (Nov 2019) DOI:10.1016/j.joule.2019.10.013 https://www.sciencedirect.com/science/article/abs/pii/S254243511930529X
Transitions of lithium occupation in graphite: A physically informed model in the dilute lithium occupation limit supported by electrochemical and thermodynamic measurements, Mercer, M., Electrochimica Acta (Nov 2019) DOI:10.1016/j.electacta.2019.134774 https://www.sciencedirect.com/science/article/pii/S0013468619316457
Multiscale Electrolyte Transport Simulations for Lithium-Ion Batteries, Hanke, F., J. Electrochem. Soc. (Nov 2019) DOI:10.1149/2.0222001JES https://iopscience.iop.org/article/10.1149/2.0222001JES/meta
Native Defects and their Doping Response in the Lithium Solid Electrolyte Li7La3Zr2O12, Squires, A. G., Chem. Mater. (Dec 2019) DOI:10.1021/acs.chemmater.9b04319 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04319
Descriptors for Electron and Hole Charge Carriers in Metal Oxides, Davies, D. W., J. Phys. Chem. Lett. (Dec 2019) DOI:10.1021/acs.jpclett.9b03398 https://pubs.acs.org/doi/abs/10.1021/acs.jpclett.9b03398#
Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo, Gavilán-Arriazu, E. M., J. Electrochem. Soc. (Jan 2020) DOI:10.1149/2.0332001JES http://jes.ecsdl.org/content/167/1/013533.full
The Surface Cell Cooling Coefficient: A Standard to Define Heat Rejection from Lithium-Ion Battery Pouch Cells, Hales, A., J. Electrochem. Soc. (Jan 2020) DOI:10.1149/1945-7111/ab6985 https://iopscience.iop.org/article/10.1149/1945-7111/ab6985/meta
Generalised single particle models for high-rate operation of graded lithium-ion electrodes: systematic derivation and validation, Richardson, G., Electrochimica Acta (Feb 2020) DOI:10.1016/j.electacta.2020.135862 https://www.sciencedirect.com/science/article/pii/S0013468620302541
Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., J. Electrochem. Soc. (Feb 2020) DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also SOLBAT)
Parameterization of prismatic lithium–iron–phosphate cells through a streamlined thermal/electrochemical model, Chu, H. N., Journal of Power Sources (Mar 2020) DOI:10.1016/j.jpowsour.2020.227787 https://www.sciencedirect.com/science/article/abs/pii/S0378775320300902
A practical approach to large scale electronic structure calculations in electrolyte solutions via continuum-embedded linear-scaling DFT, Dziedzic, J., J. of Physical Chemistry C (Mar 2020) DOI:10.1021/acs.jpcc.0c00762 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c00762
Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering (Mar 2020) DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also SOLBAT)
Transition Metal Migration Can Facilitate Ionic Diffusion in Defect Garnet Based Intercalation Electrodes, Bashian, N., ACS Energy Letters (Apr 2020) DOI:10.1021/acsenergylett.0c00376 https://pubs.acs.org/doi/abs/10.1021/acsenergylett.0c00376#
Derivation of an Effective Thermal Electrochemical Model for Porous Electrode Batteries using Asymptotic Homogenisation, Hunt, M. J., Journal of Engineering Mathematics (Apr 2020) DOI:10.1007/s10665-020-10045-8 https://link.springer.com/article/10.1007/s10665-020-10045-8#additional-information
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x#Ack1 (See also Degradation)
Physical Origin of the Differential Voltage Minimum Associated with Lithium Plating in Li-Ion Batteries, O’Kane, S., Journal of The Electrochemical Society (May 2020) DOI:10.1149/ 1945-7111/ab90ac https://iopscience.iop.org/article/10.1149/1945-7111/ab90ac/meta
Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics, Gavilán-Arriazu, E. M., Journal of Solid State Electrochemistry (Jun 2020) DOI:10.1007/s10008-020-04717-9 https://link.springer.com/article/10.1007%2Fs10008-020-04717-9
Pores for thought: generative adversarial networks for stochastic reconstruction of 3D multi-phase electrode microstructures with periodic boundaries, Gayon-Lombardo, A., npj Computational Materials (Jun 2020) DOI:10.1038/s41524-020-0340-7 https://www.nature.com/articles/s41524-020-0340-7
Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence for smart battery management systems, Wu, B., Energy and AI (Jul 2020) DOI:10.1016/j.egyai.2020.100016 https://www.sciencedirect.com/science/article/pii/S2666546820300161#sec0015
Shifting-reference concentration cells to refine composition-dependent transport characterization of binary lithium-ion electrolytes, Wang, A. A., Electrochimica Acta (Jul 2020) DOI:10.1016/j.electacta.2020.136688 https://www.sciencedirect.com/science/article/pii/S0013468620310811
Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief (Jul 2020) DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276#ack0001 (See also Degradation)
Probing heterogeneity in Li-ion batteries with coupled multiscale models of electrochemistry and thermal transport using tomographic domains, Tranter, T. G., J. Electrochem. Soc. (Jul 2020) DOI:10.1149/1945-7111/aba44b https://iopscience.iop.org/article/10.1149/1945-7111/aba44b/meta
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D. W., IOP SciNotes (Jul 2020) DOI:10.1088/2633-1357/ab9750 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750/meta#acknowledgements (See also FutureCat)
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Degradation and NEXGENNA)
The electrode tortuosity factor: why the conventional tortuosity factor is not well suited for quantifying transport in porous Li-ion battery electrodes and what to use instead, Nguyen, T., npj Computational Materials (Aug 2020) DOI:10.1038/s41524-020-00386-4 https://www.nature.com/articles/s41524-020-00386-4
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., J. Electrochem. Soc. (Aug 2020) DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also LiSTAR)
Voltage Hysteresis Model for Silicon Electrodes for Lithium Ion Batteries, Including Multi-Step Phase Transformations, Crystallization and Amorphization, Jiang, Y., Journal of the Electrochemical Society (Sep 2020) DOI:10.1149/1945-7111/abbbba https://iopscience.iop.org/article/10.1149/1945-7111/abbbba/meta
An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1/meta (See also Degradation)
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also LiSTAR, Imaging Dynamic Electrochemical Interfaces)
Battery Degradation
In‐Situ Electrochemical SHINERS Investigation of SEI Composition on Carbon‐Coated Zn0.9Fe0.1O Anode for Lithium‐Ion Batteries, Cabo‐Fernandez, L., Batteries & Supercaps (Sep 2018) DOI:10.1002/batt.201800063 https://onlinelibrary.wiley.com/doi/abs/10.1002/batt.201800063
Evolution of Electrochemical Cell Designs for In-Situ and Operando 3D Characterization, Shearing, P., Materials (Nov 2018) DOI:10.3390/ma11112157 https://www.ncbi.nlm.nih.gov/pubmed/30388856
4D Visualisation of In-situ Nano-compression of Li-ion Cathode Materials to Mimic Early Stage Calendering, Shearing, P., Daemi, S.R., Materials Horizons (Dec 2018) DOI:10.1039/C8MH01533C https://pubs.rsc.org/en/content/articlelanding/2019/mh/c8mh01533c#!divAbstract
Evolution of Structure and Lithium Dynamics in LiNi0.8Mn0.1Co0.1O2(NMC811) Cathodes during Electrochemical Cycling, Märker, K., Chemistry of Materials (Mar 2019) DOI:10.1021/acs.chemmater.9b00140 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00140
Modelling and experiments to identify high-risk failure scenarios for testing the safety of lithium-ion cells, Finegan, D. P., Journal of Power Sources (Mar 2019) DOI:10.1016/j.jpowsour.2019.01.077 https://doi.org/10.1016/j.jpowsour.2019.01.077
Temperature Considerations for Li-ion Batteries Comparing Inductive Charging with Mains Device Charging Modes for Portable Electronic Devices, Loveridge, M., ACS Energy Letters (Apr 2019) DOI:10.1021/acsenergylett.9b00663 https://www.researchgate.net/publication/332475349_Temperature_Considerations_for_Charging_Li-Ion_Batteries_Inductive_versus_Mains_Charging_Modes_for_Portable_Electronic_Devices
Spatially Resolving Lithiation in Silicon–Graphite Composite Electrodes via in Situ High-Energy X-ray Diffraction Computed Tomography, Finegan, D. P., Nano Letters (May 2019) DOI:10.1021/acs.nanolett.9b00955 https://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.9b00955
Porous Metal-Organic Frameworks for Enhanced Performance Silicon Anodes in Lithium-ion Batteries, Loveridge, M., Chemistry of Materials (May 2019) DOI:10.1021/acs.chemmater.9b00933 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00933
Concentrated Electrolytes for Enhanced Stability of Al-Alloy Negative Electrodes in Li-Ion Batteries, Chan, A. K., J. Electrochem. Soc. (Jun 2019) DOI:10.1149/2.0581910jes https://iopscience.iop.org/article/10.1149/2.0581910jes/meta
Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response, Wang, B., J. of Physical Chemistry C (Aug 2019) DOI:10.1021/acs.jpcc.9b04292 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.9b04292
Virtual unrolling of spirally-wound lithium-ion cells for correlative degradation studies and predictive fault detection, Kok, M. D. R., Sustainable Energy and Fuels (Aug 2019) DOI:10.1039/C9SE00500E https://pubs.rsc.org/en/content/articlehtml/2019/se/c9se00500e
Kerr gated Raman spectroscopy of LiPF6 salt and LiPF6-based organic carbonate electrolyte for Li-ion batteries, Cabo-Fernandez, L., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP02430A https://pubs.rsc.org/en/content/articlelanding/2019/cp/c9cp02430a#!divAbstract
Representative resolution analysis for X-ray CT: A Solid oxide fuel cell case study, Heenan, T. M. M., Chemical Engineering Science: X (Oct 2019) DOI:10.1016/j.cesx.2019.100043 https://www.sciencedirect.com/science/article/pii/S2590140019300504
Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes, Zou, J., Electrochimica Acta (Nov 2019) DOI:10.1016/j.electacta.2019.135284 https://www.sciencedirect.com/science/article/pii/S0013468619321565
In situ electron paramagnetic resonance spectroelectrochemical study of graphene-based supercapacitors: Comparison between chemically reduced graphene oxide and nitrogen-doped reduced graphene oxide, Wang, B., Carbon (Dec 2019) DOI:10.1016/j.carbon.2019.12.045 https://www.sciencedirect.com/science/article/abs/pii/S0008622319312801
Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium-ion electrodes, Finegan, D. P., Nature Comms (Jan 2020) DOI:10.1038/s41467-020-14467-x https://www.nature.com/articles/s41467-020-14467-x#Ack1
Theoretical transmissions for X-ray computed tomography studies of lithium-ion battery cathodes, Heenan, T. M. M., Materials & Design (Feb 2020) DOI:10.1016/j.matdes.2020.108585 https://www.sciencedirect.com/science/article/pii/S0264127520301192#s0120
Thermal Runaway of a Li-Ion Battery Studied by Combined ARC and Multi-Length Scale X-ray CT, Patel, D., J.Electrochem. Soc (Apr 2020) DOI:10.1149/1945-7111/ab7fb6 https://iopscience.iop.org/article/10.1149/1945-7111/ab7fb6/meta
Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning, Zhang, Y., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15235-7 https://www.nature.com/articles/s41467-020-15235-7#Ack1
Rapid Preparation of Geometrically Optimal Battery Electrode Samples for Nano Scale X-ray Characterisation, Tan, C., Journal of The Electrochemical Society (Apr 2020) DOI:10.1149/1945-7111/ab80cd https://iopscience.iop.org/article/10.1149/1945-7111/ab80cd
3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling, Lu, X., Nature Comms (Apr 2020) DOI:10.1038/s41467-020-15811-x https://www.nature.com/articles/s41467-020-15811-x#Ack1 (See also Multi-Scale Modelling)
Resolving Li‐Ion Battery Electrode Particles Using Rapid Lab‐Based X‐Ray Nano‐Computed Tomography for High‐Throughput Quantification, Heenan, T. M. M., Advanced Science (Apr 2020) DOI:10.1002/advs.202000362 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202000362
Quantitative Relationships Between Pore Tortuosity, Pore Topology, and Solid Particle Morphology Using a Novel Discrete Particle Size Algorithm, Usseglio-Viretta, F., Journal of The Electrochemical Society (Jun 2020) DOI:10.1149/1945-7111/ab913b https://iopscience.iop.org/article/10.1149/1945-7111/ab913b/meta
Correlative acoustic time-of-flight spectroscopy and X-ray imaging to investigate gas-induced delamination in lithium-ion pouch cells during thermal runaway, Pham, M. T. M., Journal of Power Sources (Jun 2020) DOI:10.1016/j.jpowsour.2020.228039 https://www.sciencedirect.com/science/article/abs/pii/S0378775320303426
Highly sensitive operando pressure measurements of Li-ion battery materials with a simply modified Swagelok cell, Ryall, N., Journal of The Electrochemical Society (Jun 2020) DOI:10.1149/1945-7111/ab9e81 https://iopscience.iop.org/article/10.1149/1945-7111/ab9e81/meta
Exploring cycling induced crystallographic change in NMC with X-ray diffraction computed tomography, Daemi, S.R., Physical Chemistry Chemical Physics (Jun 2020) DOI:10.1039/D0CP01851A https://pubs.rsc.org/en/content/articlehtml/2020/cp/d0cp01851a
Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Appl. Mater. Interfaces (Jul 2020) DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190 (See also LiSTAR)
Data for an Advanced Microstructural and Electrochemical Datasheet on 18650 Li-ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Data in Brief (Jul 2020) DOI:10.1016/j.dib.2020.106033 https://www.sciencedirect.com/science/article/pii/S2352340920309276#ack0001 (See also Multi-Scale Modelling)
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Degradation and NEXGENNA)
High Power Energy Storage from Carbon Electrodes using Highly Acidic Electrolytes, Cao, J., Journal of Physical Chemistry C (Aug 2020) DOI:10.1021/acs.jpcc.0c04930 https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.0c04930#
Operando NMR of NMC811/graphite lithium-ion batteries: Structure, dynamics, and lithium metal deposition, Märker, K., J., Journal of the American Chemical Society, (Sep 2020) DOI:10.1021/jacs.0c06727 https://pubs.acs.org/doi/abs/10.1021/jacs.0c06727
The Detection of Monoclinic Zirconia and Non-Uniform 3D Crystallographic Strain in a Re-Oxidized Ni-YSZ Solid Oxide Fuel Cell Anode, Heenan, T. M. M., Crystals, (Oct 2020) DOI:10.3390/cryst10100941 https://www.mdpi.com/2073-4352/10/10/941
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB, Imaging Dynamic Electrochemical Interfaces)
An Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and Graphite-Silicon Anodes, Heenan, T. M. M., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abc4c1 https://iopscience.iop.org/article/10.1149/1945-7111/abc4c1/meta (See also Multi-Scale Modelling)
ReLiB - Recycling and Reuse of Lithium-ion Batteries
Can electric vehicles significantly reduce our dependence on non-renewable energy? Scenarios of compact vehicles in the UK as a case in point, Raugei, M., Journal of Cleaner Production (Nov 2018) DOI:10.1016/j.jclepro.2018.08.107 https://doi.org/10.1016/j.jclepro.2018.08.107
Net Energy Analysis must not compare apples and oranges, Raugei, M., Nature Energy (Jan 2019) DOI:10.1038/s41560-019-0327-0 https://doi.org/10.1038/s41560-019-0327-0
Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles, Raugei, M., Journal of Cleaner Production (Mar 2019) DOI:10.1016/j.jclepro.2018.12.237 https://www.sciencedirect.com/science/article/pii/S0959652618339593
Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: Implications for designing future case studies, Rajaeifar, M. A., Renewable and Sustainable Energy Reviews (May 2019) DOI:10.1016/j.rser.2019.05.004 https://www.sciencedirect.com/science/article/pii/S1364032119303107?via%3Dihub
Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions, Capeness, M. J., Frontiers in Microbiology (May 2019) DOI:10.3389/fmicb.2019.00997 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6520526/
Energy Return On Investment – setting the record straight, Raugei, M., Joule (Aug 2019) DOI:10.1016/j.joule.2019.07.020 https://www.sciencedirect.com/science/article/abs/pii/S2542435119303642
Our Waste, Our resources; A Strategy for England' - Switching to a circular economy through the use of extended producer responsibility, Dawson, L., Environmental Law Review (Sep 2019) DOI:10.1177/1461452919851943 https://journals.sagepub.com/doi/10.1177/1461452919851943
The role of electric vehicles in near-term mitigation pathways, Hill, G., Applied Energy, Oct 2019, DOI:10.1016/j.apenergy.2019.04.107 https://www.sciencedirect.com/science/article/pii/S0306261919307834
Recycling Lithium-Ion Batteries From Electric Vehicles, Harper, G., Nature (Nov 2019) DOI:10.1038/s41586-019-1682-5 https://www.nature.com/articles/s41586-019-1682-5
Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents, Al-Murshedi, A. Y. M., The International Journal of Surface Engineering and Coatings (Nov 2019) DOI:10.1080/00202967.2019.1671062 https://www.tandfonline.com/doi/abs/10.1080/00202967.2019.1671062
What are the energy and environmental impacts of adding battery storage to photovoltaics?, Raugei, M., Energy Technology (Jan 2020) DOI:10.1002/ente.201901146 https://onlinelibrary.wiley.com/doi/abs/10.1002/ente.201901146
Beyond the EVent horizon: Technological Obsolescence in UK Battery Electric Vehicles from 2011 – 2025, Skeete, J. P., Energy Research & Social Science (May 2020) DOI:10.1016/j.erss.2020.101581 https://www.sciencedirect.com/science/article/pii/S2214629620301572
Disassembly of Li Ion Cells—Characterization and Safety Considerations of a Recycling Scheme, Marshall, J., Metals (Jun 2020) DOI:10.3390/met10060773 https://www.mdpi.com/2075-4701/10/6/773
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also CATMAT and Nextrode)
Experimental Visualization of Commercial Lithium-Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy, Terreblanche, J. S., J. Phys. Chem. C (Jun 2020) DOI:10.1021/acs.jpcc.0c02713 https://pubs.acs.org/doi/10.1021/acs.jpcc.0c02713?ref=pdf
A circular economy for electric vehicle batteries: driving the change, Ahuja, J., Journal of Property, Planning and Environmental Law (Aug 2020) DOI:10.1108/JPPEL-02-2020-0011 https://www.emerald.com/insight/content/doi/10.1108/JPPEL-02-2020-0011/full/html
Circular economy strategies for electric vehicle batteries reduce reliance on raw materials, Baars, J., Nature Sustainability (Sep 2020) DOI:10.1038/s41893-020-00607-0 https://www.nature.com/articles/s41893-020-00607-0
A rapid neural network–based state of health estimation scheme for screening of end of life electric vehicle batteries, Rastegarpanah, A., Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering (Sep 2020) DOI:10.1177/0959651820953254 https://journals.sagepub.com/doi/full/10.1177/0959651820953254
A review of physical processes used in the safe recycling of lithium-ion batteries, Sommerville et al., Sustainable Materials and Technologies, 25, e00197 (Sep 2020) DOI:10.1016/j.susmat.2020.e00197 https://www.sciencedirect.com/science/article/abs/pii/S2214993719303501
The EV revolution: The road ahead for critical raw materials demand, Jones, B., Applied Energy (Oct 2020) DOI:10.1016/j.apenergy.2020.115072 https://www.sciencedirect.com/science/article/pii/S0306261920305845
A qualitative assessment of lithium ion battery recycling processes, Sommerville, R., Resources, Conservation and Recycling (Oct 2020) DOI:10.1016/j.resconrec.2020.105219 https://www.sciencedirect.com/science/article/abs/pii/S0921344920305358
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also Degradation, Imaging Dynamic Electrochemical Interfaces)
Nextrode – Electrode Manufacturing
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282 (See also ReLiB and CATMAT)
Controlling molten carbonate distribution in dual-phase molten salt-ceramic membranes to increase carbon dioxide permeation rates, Kazakli, M., Journal of Membrane Science (Aug 2020) DOI:10.1016/j.memsci.2020.118640 https://www.sciencedirect.com/science/article/pii/S0376738820312163
CATMAT – Next Generation Lithium-ion Cathode Materials
The Building Blocks of Battery Technology: Using Modified Tower Block Game Sets to Explain and Aid the Understanding of Rechargeable Li-Ion Batteries, Driscoll, E. H., J. Chem. Educ. (Jun 2020) DOI:10.1021/acs.jchemed.0c00282 https://pubs.acs.org/doi/abs/10.1021/acs.jchemed.0c00282
First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk House, R.A., Nature Energy (Sep 2020) DOI:10.1038/s41560-020-00697-2 https://www.nature.com/articles/s41560-020-00697-2
FutureCat – Next Generation Lithium-ion Cathode Materials
Muon Spectroscopy for Investigating Diffusion in Energy Storage Materials, McClelland, I., Annual Review of Materials Research (May 2020) DOI:10.1146/annurev-matsci-110519-110507 https://www.annualreviews.org/doi/full/10.1146/annurev-matsci-110519-110507#_i40
Low-cost descriptors of electrostatic and electronic contributions to anion redox activity in batteries, Davies, D.W., IOPSciNotes, (Jul 2020), 1 024805 https://iopscience.iop.org/article/10.1088/2633-1357/ab9750
SOLBAT: Solid-state Metal Anode Batteries
Selective and Facile Synthesis of Sodium Sulfide and Sodium Disulfide Polymorphs, El-Shinawi, H., Inorganic Chemistry (Jun 2018) DOI:10.1021/acs.inorgchem.8b00776 https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.8b00776
Na1.5La1.5TeO6: Na+ conduction in a novel Na-rich double perovskite, Amores, M. , Chemical Communications (Aug 2018) DOI:10.1039/C8CC03367F https://pubs.rsc.org/en/content/articlelanding/2018/cc/c8cc03367f#!divAbstract
Lithium Transport in Li4.4M0.4M′0.6S4 (M = Al3+, Ga3+, and M′ = Ge4+, Sn4+): Combined Crystallographic, Conductivity, Solid State NMR, and Computational Studies, Leube, B. T. , Chemistry of Materials (Sep 2018) DOI:10.1021/acs.chemmater.8b03175 https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03175
Low-Dose Aberration-Free Imaging of Li-Rich Cathode Materials at Various States of Charge Using Electron Ptychography Juan, Lozano, G., Nano Letters (Sep 2018 DOI:10.1021/acs.nanolett.8b02718 https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02718
Room temperature demonstration of a sodium superionic conductor with grain conductivity in excess of 0.01 S cm−1 and its primary applications in symmetric battery cells, Ma, Qianli John T. S. Irvine: Journal of Materials Chemistry A (Feb 2019) DOI:10.1039/C9TA00048H https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA00048H#!divAbstract
7Li NMR Chemical Shift Imaging To Detect Microstructural Growth of Lithium in All-Solid-State Batteries, Marbella, L. E. , Chemistry of Materials (Apr 2019) DOI:10.1021/acs.chemmater.8b04875 https://pubs.acs.org/doi/full/10.1021/acs.chemmater.8b04875
What Triggers Oxygen Loss in Oxygen Redox Cathode Materials?, House, R. A., Chemistry of Materials (Apr 2019) DOI:10.1021/acs.chemmater.9b00227 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b00227
Nature of the “Z”-phase in Layered Na-ion Battery Cathodes, Somerville, J. W., Energy & Environmental Sciences (May 2019) DOI:10.1039/C8EE02991A https://pubs.rsc.org/en/content/articlelanding/2019/EE/C8EE02991A#!divAbstract
Advanced Spectroelectrochemical Techniques to Study Electrode Interfaces Within Lithium-Ion and Lithium-Oxygen Batteries, Cowan, A., Annual Review of Analytical Chemistry (Jun 2019) DOI:10.1146/annurev-anchem-061318-115303 https://www.annualreviews.org/doi/abs/10.1146/annurev-anchem-061318-115303
Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Kasemchainan, J., Nature Materials (Jul 2019) DOI:10.1038/s41563-019-0438-9 https://www.nature.com/articles/s41563-019-0438-9
Co-spray printing of LiFePO4 and PEO-Li1.5Al0.5Ge1.5(PO4)3 hybrid electrodes for all-solid-state Li-ion battery applications, Bu, J., Journal of Materials Chemistry A (Aug 2019) DOI:10.1039/C9TA03824H https://pubs.rsc.org/en/content/articlelanding/2019/TA/C9TA03824H#!divAbstract
Dental Resin Monomer Enables Unique NbO2/Carbon Lithium‐Ion Battery Negative Electrode with Exceptional Performance, Ji, Q., Advanced Functional Materials (Aug 2019) DOI:10.1002/adfm.201904961 https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201904961
Dendrite nucleation in lithium-conductive ceramics, Li, G., Physical Chemistry Chemical Physics (Sep 2019) DOI:10.1039/C9CP03884A https://pubs.rsc.org/en/content/articlehtml/2019/cp/c9cp03884a
Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes, Naylor, A. J., J. Mater. Chem. A (Sep 2019) DOI:10.1039/C9TA09019C https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta09019c
Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, Jacinthe, Chemistry of Materials (Oct 2019) DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/10.1021/acs.chemmater.9b03230
A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li–S batteries, El-Shinawi, H., Nanoscale (Oct 2019) DOI:10.1039/C9NR06239D https://pubs.rsc.org/lv/content/articlehtml/2019/nr/c9nr06239d
A new approach to very high lithium salt content quasi-solid state electrolytes for lithium metal batteries using plastic crystals, Al-Masri, D., J. Mater. Chem. A (Oct 2019) DOI:10.1039/C9TA11175A https://pubs.rsc.org/en/content/articlehtml/2019/ta/c9ta11175a
The Interface between Li6.5La3Zr1.5Ta0.5O12 and Liquid Electrolyte, Liu, J., Joule (Oct 2019) DOI:10.1016/j.joule.2019.10.001 https://www.sciencedirect.com/science/article/pii/S2542435119304830
Is Nitrogen Present in Li3N·P2S5 Solid Electrolytes Produced by Ball Milling?, Hartley, G. O., Chemistry of Materials (Nov 2019) DOI:10.1021/acs.chemmater.9b01853 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b01853
Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes, House, R. A., Nature (Dec 2019) DOI:10.1038/s41586-019-1854-3 https://www.nature.com/articles/s41586-019-1854-3
Sodium/Na β″ Alumina Interface: Effect of Pressure on Voids, Jolly, D. S., ACS Appl. Mater. Interfaces (Dec 2019) DOI:10.1021/acsami.9b17786 https://pubs.acs.org/doi/abs/10.1021/acsami.9b17786
Mechanics of the Ideal Double-Layer Capacitor, Monroe, C. W., J. Electrochem. Soc. (Feb 2020) DOI:10.1149/1945-7111/ab6b04 https://iopscience.iop.org/article/10.1149/1945-7111/ab6b04 (See also Multi-Scale Modelling)
Multiscale Lithium-Battery Modeling from Materials to Cells, Li, G., Annual Review of Chemical and Biomolecular Engineering (Mar 2020) DOI:10.1146/annurev-chembioeng-012120-083016 https://www.annualreviews.org/doi/pdf/10.1146/annurev-chembioeng-012120-083016 (See also Multi-Scale Modelling)
Dendrites as climbing dislocations in ceramic electrolytes: Initiation of growth, Shishvan, S. S., Journal of Power Sources (Mar 2020) DOI:10.1016/j.jpowsour.2020.227989 https://www.sciencedirect.com/science/article/abs/pii/S0378775320302925
Triblock polyester thermoplastic elastomers with semi-aromatic polymer end blocks by ring-opening copolymerization, Gregory, Georgina L., Chemical Science (May 2020) DOI:10.1039/D0SC00463D https://pubs.rsc.org/en/content/articlelanding/2020/sc/d0sc00463d#!divAbstract
Fabrication of Li1+ xAlxGe2-x (PO4) 3 thin films by sputtering for solid electrolytes, Mousavi, T., Solid State Ionics (Jul 2020) DOI:10.1016/j.ssi.2020.115397 https://www.sciencedirect.com/science/article/abs/pii/S0167273820304513
2020 roadmap on solid-state batteries, Pasta, M., Journal of Physics: Energy (Aug 2020) DOI:10.1088/2515-7655/ab95f4 https://iopscience.iop.org/article/10.1088/2515-7655/ab95f4/meta
Rational Design and Mechanical Understanding of Three-Dimensional Macro-/Mesoporous Silicon Lithium-Ion Battery Anodes with Tunable Pore size and, Zuo, X., Applied Materials and Interfaces (Sep 2020) DOI:10.1021/acsami.0c12747 https://pubs.acs.org/doi/abs/10.1021/acsami.0c12747
Imaging Sodium Dendrite Growth in All‐Solid‐State Sodium Batteries using 23Na T2‐weighted MRI, Rees, G. J., Angewandte, Chemie International Edition (Oct 2020) DOI:10.1002/anie.202013066 https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202013066
Computationally Guided Discovery of the Sulfide Li3AlS3 in the Li–Al–S Phase Field: Structure and Lithium Conductivity, Gamon, J., Chemical Materials (Oct 2020) DOI:10.1021/acs.chemmater.9b03230 https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b03230
Electrochemo-Mechanical Properties of Red Phosphorus Anodes in Lithium, Sodium, and Potassium Ion Batteries, Capone, I., Matter (Oct 2020) DOI:10.1016/j.matt.2020.09.017 https://www.sciencedirect.com/science/article/pii/S2590238520305154
NEXGENNA – Sodium-ion Batteries
Advances in Organic Anode Materials for Na‐/K‐Ion Rechargeable Batteries, Desai, A. V., ChemSusChem (Jul 2020) DOI:10.1002/cssc.202001334 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.202001334
Elucidating the Sodiation Mechanism in Hard Carbon by Operando Raman Spectroscopy, Weaving, J., Applied Energy Materials (Aug 2020) DOI:10.1021/acsaem.0c00867 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c00867 (See also Multi-Scale Modelling and Degradation)
Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na‐ion batteries, Costa Sara I. R., Chemistry A European Journal (Aug 2020) DOI:10.1002/chem.202003129 https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/chem.202003129
Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0. 67Mg0. 2Mn0. 8O2, Kim, E. Journal of Applied Energy Materials (Sep 2020) DOI:10.1021/acsaem.0c01352 https://pubs.acs.org/doi/abs/10.1021/acsaem.0c01352
Activation of anion redox in P3 structure cobalt-doped sodium manganese oxide via introduction of transition metal vacancies, Kim, E. J., Journal of Power Sources (Oct 2020) DOI:10.1016/j.jpowsour.2020.229010 https://www.sciencedirect.com/science/article/pii/S0378775320313070
LiSTAR – Lithium-sulfur Batteries
A Highly Sensitive Electrochemical Sensor of Polysulfides in Polymer Lithium-Sulfur Batteries, Meddings, N., Journal of The Electrochemical Society (May 2020) DOI:10.1149/1945-7111/ab8ce9 https://iopscience.iop.org/article/10.1149/1945-7111/ab8ce9/meta
Operando Electrochemical Atomic Force Microscopy of Solid–Electrolyte Interphase Formation on Graphite Anodes: The Evolution of SEI Morphology and Mechanical Properties, Zhang, Z., ACS Appl. Mater. Interfaces (Jul 2020) DOI:10.1021/acsami.0c11190 https://pubs.acs.org/doi/abs/10.1021/acsami.0c11190
Toward Practical Demonstration of High-Energy-Density Batteries, Shearing, P. R., Joule (Jul 2020) DOI:10.1016/j.joule.2020.06.019 https://www.sciencedirect.com/science/article/abs/pii/S2542435120302828
The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery, Di Lecce, D., J. of Power Sources (Jul 2020) DOI:10.1016/j.jpowsour.2020.228424 https://www.sciencedirect.com/science/article/abs/pii/S037877532030728X
Identifying Defects in Li-Ion Cells Using Ultrasound Acoustic Measurements, Robinson, J., J. Electrochem. Soc. (Aug 2020) DOI:10.1149/1945-7111/abb174 https://iopscience.iop.org/article/10.1149/1945-7111/abb174/meta (See also Multi-scale Modelling)
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also Imaging Dynamic Electrochemical Interfaces, Multi-Scale Modelling)
Imaging Dynamic Electrochemical Interfaces
Scanning Electrochemical Cell Microscopy (SECCM) in Aprotic Solvents: Practical Considerations and Applications, Bentley, C. L., Analytical Chemistry (Jun 2020) DOI:10.1021/acs.analchem.0c01540 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c01540
Electrochemical Impedance Measurements in Scanning Ion Conductance Microscopy, Shkirskiy, V., Analytical Chemistry (Aug 2020) DOI:10.1021/acs.analchem.0c02358 https://pubs.acs.org/doi/abs/10.1021/acs.analchem.0c02358
Minimising damage in high resolution scanning transmission electron microscope images of nanoscale structures and processes, Nicholls, D., Nanoscale (Oct 2020) DOI:10.1039/D0NR04589F https://pubs.rsc.org/en/content/articlehtml/2020/nr/d0nr04589f (See also ReLiB, Degradation)
4D Neutron and X-ray Tomography Studies of High Energy Density Primary Batteries: Part I. Dynamic Studies of LiSOCl2 During Discharge, Ziesche, R., Journal of the Electrochemical Society (Oct 2020) DOI:10.1149/1945-7111/abbfd9 https://iopscience.iop.org/article/10.1149/1945-7111/abbfd9/meta (See also LiSTAR, Multi-Scale Modelling)
What Lies Beneath? Probing Buried Interfaces in Working Batteries
The origin of chemical inhomogeneity in garnet electrolytes and its impact on the electrochemical performance, Brugge R.H., J. Mater. Chem. A (Jul 2020) 8, 14265-14276 https://pubs.rsc.org/en/content/articlelanding/2020/ta/d0ta04974c#!divAbstract
Comments are closed.